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Abstract

We examine the convergence of real numbers in the Mandelbrot set, including what values belong to
the set and how different values behave differently under the Mandelbrot mapping. We carry out this
analysis with the aid of the logistic map and demonstrate a correspondence between the two mappings.

The Mandelbrot set M is defined as the set of points c ∈ C such that the recurrence relation

z0 = 0

zn+1 = z2n + c

remains bounded for all n ∈ N. The sequence zn need not converge to only a single value, or any specific
value at all; as long as the sequence does not escape to infinity, it is included in M .
It is of interest to consider the intersection of M with R; this is the set of real numbers contained in M .
When c is real, the sequence zn is real for every n ∈ N.

The Mandelbrot set in the complex plane.

If for any point c ∈ C, |zn| > 2 for any n ∈ N, zn will escape to infinity.
We can see this from the triangle inequality, which states that |zn+1| = |z2n + c| ≥ |z2n| − |c|. Suppose
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|c| = 2 + ε for some ε > 0 and for some m ∈ N, |zm| > 2 +mε; then

|zm+1| ≥ |z2m| − |c| > (2 +mε)
2 − (2 + ε) > 2 + (m+ 1) ε.

Since |zn+1| > 2 + (n+ 1) ε for any n > m, and the right hand side grows without bound as n→∞, the left
hand side grows without bound.

The set M intersects with the real axis along the interval [−2, 0.25]. To show this, we inspect the in-
terval from left to right.
By the previous result, any c < −2 cannot be in M . For the point c = −2, it is simple to show that zn = 2
for every n ≥ 1, so −2 ∈M . If −2 < c < 0, zn < 2 for every n, so c is also in M .
When c > 0, zn+1 > zn for every n; to remain bounded, this must approach a limit such that zn+1 = zn.

Expanding and solving for zn yields zn = 1+
√
1−4c
2 , which becomes non-real when c > 0.25. Thus 0.25 is the

largest real number contained in M .

Having established that the interval [−2, 0.25] ∈ M , it is natural to ask if or how the sequences zn con-
verge for each point in the interval. To aid in this analysis, we will transform the equation using the

substitutions zn = r( 1
2 − xn) and c = r

2 −
r2

4 .

zn+1 = z2n + c

zn+1 = r2
(

1

2
− xn

)2

+

(
r

2
− r2

4

)
zn+1 = r2x2n − r2xn +

r2

4
+
r

2
− r2

4

zn+1 = r2x2n − r2xn +
r

2

r

(
1

2
− xn+1

)
= r2x2n − r2xn +

r

2
r

2
− rxn+1 = r2x2n − r2xn +

r

2

xn+1 = rxn − rx2n
xn+1 = rxn(1− xn).

This recurrence relation is known as the logistic map. Because the relation for the logistic map can be
derived from the Mandelbrot relation (and vice versa) using a linear change of variable, the convergence of
the logistic map mirrors the convergence of M ∩ R.
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Bifurcation diagram for the logistic map, 0 < r < 4.

Solving for r in our second substitution yields r = 1 +
√

1− 4c; as c ranges from −2 to 0.25, r ranges from
1 to 4. Therefore, we examine the behavior of the logistic map with r in the interval [1, 4].

When r ∈ [1, 3], xn converges to a single nonzero point. From our substitution, this corresponds to the
interval c ∈ [−0.75, 0.25] in M . The point c = −0.75 forms the cusp between the main cardioid of M and the
secondary cardioid to its left, and all complex c inside the main cardioid converge to a single point dependent
on c.
We can find the point to which xn converges for a given r by solving the equation

x = rx(1− x),

which simplifies to
rx2 − (r − 1)x = 0.

This equation represents the stable point mapping back to itself after one iteration. It has a degenerate
solution at x = 0 and a second solution at x = r−1

r . We can then use this point our substitution to find the

respective c and z values in M . For example, for r = 1 +
√

3, xn → 3−
√
3

2 as n → ∞, and for its analog

c = −0.5, zn → 1−
√
3

2 as n→∞.

As r increases to within the rage (3, 1+
√

6], the logistic map becomes less stable; the map oscillates between
two points as n becomes arbitrarily large. This interval corresponds to the interval c ∈ [−1.25,−0.75) in M .
To find the points to which xn converges, we need to find two points that map back to themselves after
exactly two iterations. We can find this by solving the equation

x = r(rx(1− x))(1− (rx(1− x))),

which simplifies to
r3x4 − 2r3x3 + (r3 + r2)x2 − (r2 + 1)x = 0.

This equation again has a degenerate solution at x = 0 and three other solutions at

x =
r − 1

r

=
r + 1−

√
r2 − 2r − 3

2r

=
r + 1 +

√
r2 − 2r − 3

2r
.
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The first of these three solutions maps to itself after every iteration and not after exactly two, so it is not
valid. The other two solutions represent the two values between which xn will oscillate as n→∞.

For example, for r = 1 +
√

5, xn oscillates between 1
2 and 1+

√
5

4 as n → ∞, and for its analog c = −0.5, zn
oscillates between −1 and 0.

When r is greater than 1 +
√

6 and less than approximately 3.54409..., xn will oscillate between 4 val-
ues as n increases. (The exact value for the upper bound of the range of 4-cycles is a root of a polynomial of
degree 12). Within the corresponding range in M , where c ∈ [−1.38084...,−0.75), zn will oscillate between
4 values as well.
As r increases further, xn oscillates between 8 values, then 16, and so on. The ratio of the lengths of each
oscillation interval approaches 4.99620..., known as the Feigenbaum constant.

At approximately r ≥ 3.56995..., the logistic map becomes “chaotic:” in the Mandelbrot set, any c off
the real line does not belong in M . Exceptions occur at certain values, such as r > 1 + 2

√
2, after which xn

briefly oscillates between 3 values, then 6, 12, and so on.

Correspondence between the logistic map and the Mandelbrot set.
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